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An impact oscillator with drift is considered. The model accounts for viscoelastic impacts and is capable of
mimicking the dynamics of progressive motion, which is important in many applications. To simplify the
analysis of this system, a transformation decoupling the original coordinates is introduced. As a result, the
bounded oscillations are separated from the drift motion. To study the bounded dynamics, a two-dimensional
analytical map is developed and analyzed. In general, the dynamic state of the system is fully described by four
variables: timer, relative displacemert and velocityy of the mass, and relative displacemegntf the slider
top. However, this number can be reduced to two if the beginning of the progression phase is being monitored.
The lower and upper bounds of the map domain are approximated. A graphical method of iteration of the
two-dimensional map, similar to the cobweb method used in the one-dimensional case, is proposed. The results
of numerical iterations of this two-dimensional map are presented, and a comparison is given between bifur-
cation diagrams calculated for this map and for the original system of differential equations.
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I. INTRODUCTION [10,23,24, chattering[25], and sliding[26]. A good deal of
_ _ ) ) ) work has been done to study these special bifurcations using

The dynamics of impacting systems that drift during op-normal form maps which were derived based on the system’s
gration is_of considerable importance in praqtical applicapriginal differential equationgsee for example[26-28).
tions. A wide range of models have been applied to analyzehe general bifurcation scenarios in explicitly defined two-
engineering systems operating within bounded dynamic regimensional piecewise smooth maps were also considered in
sponses. For example, in heat exchanger t{ibpshin-wall 111 29. However, it is difficult to apply the developed bifur-
milling [2], ultrasonic drilling of hard materialg3], and vi-  cation theory to the map introduced in the current study as it
broimpact ground moling systemigl], impacting models s defined implicitly. It should be noted also that, although
haye proved t'o be useful. The fundamentgl dynamlc behaviahe impact oscillatof16] can certainly undergo grazing bi-
of impact oscillators has been much studied in the f@st,  furcations, they are beyond the scope of the present study.
[5-11)) and shows great complexity and sensitivity to the  The paper is organized as follows. In the next section, the
system parameters and the initial conditions. In most cases #onsidered impact oscillator is described and equations for
is assumed that the impacting system or its elements oscillatgach phase of motion are given. Then the two-dimensional
about their equilibrium positions. Only recently has a com-map is defined on a finite domain, whose boundaries are
bination of bounded oscillations and drifting motion startedana|ytica||y determined. The numerical results are presented

to be considerefll2-16. The coordinate transformation pro- and discussed in Sec. IV, and finally the conclusions are
posed in[16] significantly simplifies the analysis of an im- grawn.

pact oscillator with drift as it allows one to apply standard
nonlinear dynamic techniques, and thus study the bounded
oscillations separately from the progressive motion and re- IIl. IMPACT OSCILLATOR WITH DRIFT

construct the drift of the system afterward. In the current \ye consider the simple two-degrees-of-freedom oscillator
study, an implicitly defined map of reduced dimension isghown in Fig. 1. A massn is driven by an external forcé

developed, similar to those introduced[itv—232. containing staticb and dynamica cogw7+¢) components.
The system considered in this work belongs to a class ofe weightless slider has a linear viscoelastic pair of stiff-

piecewise smooth systems, whose dynamics are known {Qassk and dampinge. The system is nondimensionalized,
exhibit complex bifurcation scenarios and chaos. These sy§yhere 2¢, f, b, a, and » are the nondimensional time
tems can undergo all types of bifurcations that smooth oneégamping coefficient, force, static component, and amplitude
do, but apart from them there is whole class of bifurcations, 4 frequency of the dynamic component, respectively. As

that are unique to piecewise smooth systems such as grazigs peen reported [14], the slider drifts in stick-slip phases

where the relative oscillations between the mass and the
slider are bounded and range from periodic to chaotic. Simi-

*Electronic address: E.Pavlovskaia@eng.abdn.ac.uk larly to the stick-slip phenomena reported [80,31], the
"Electronic address: M.Wiercigroch@eng.abdn.ac.uk progressive motion of the mass occurs when the force acting
*Electronic address: grebogi@if.usp.br on the slider exceeds the threshold of the dry friction fatce
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v’ =0. (2)

Contact without progressiorThis mode occurs when the
distance between the mass and the slider top is equal to zero,

f=btacos(ot+¢)

m=1 i.e., g+g-p=0, and the force acting on the mass from the
slider is greater than zero but smaller than the threshold of
Iglr=0 the dry friction force. The equations of motion are in this
Pl 5 case
q k=1 § I C=2§}>slider x
Yy v |T, p' =y,
d z y'=-2¢y-q+acodwr+ ) +b for p=q+g
" and 0<2¢y+q<d,
FIG. 1. Physical model of impact system with drift. a=y
v’ =0. (3)

The variable, z,v represent the absolute displacements of
the mass, slider top, and slider bottom, respectively. It is Contact with progressiarWWhen the distance between the
assumed that the model operates in the horizontal plane, @fass and the slider top is equal to zege,g—p=0, and the
the gravitational force is appropriately compensated. At théorce acting on the mass is greater than the threshold of the
initial instant7=0, there is a gap between the mass and thejry friction force, then the mass and the top and the bottom
slider top, indicated byy. The difference(z+g)-x allows  of the slider move together, and progression takes place. We
monitoring of the gap size. To simplify the subsequent analyhave the following equations of motion:
sis, the dimensionless friction threshold fordés set to 1,
and we also sep=7/2 and initial gapg=0.02. ,_ 1 _d

The system under consideration can operate in one of the P=- zg(q ).
following modes:no contact contact without progressign
andcontact with progressiarA detailed description of these
modes, the dimensional form of the equations of motion, and”
details of the nondimensionalization procedure can be found

"=acodwr+¢@)+b-d for p=q+g and Zy+q=d,

in [14]. As reported in[16], by introducing the system of ,__i( —d)
coordinateqp,q,v), defined in terms ofx,z,v), as a= 2¢ 4 '
p=x-vu,
‘=y+o(g-d) @
q=z-v, (1) vEYTRATd

it is possible to separate the oscillatory motion of the system The equations of motion are linear for each phase; there-
from the drift. In fact, in this coordinate systemandq are  fore the global solution can be constructed by joining the
the displacements of the mass and the slider top, relative tmcal solutions at the points of discontinuities. The set of
the current position of the slider bottom In this study, we initial values(7y;pg,Yo,qo) defines in which phase the sys-
consider bounded oscillations and attempt to reconstruct them will operate. Ifpy<<qy+g, it is theno contactphase. For
progressive motion. Po=0qo+d, it will be the contact without progressiophase if
For the purpose of clarity, a brief review summarizing 0<2éy,+q,<d or the contact with progressiorphase if
how all particular phases of the dynamic responses are de¢y,+q,=d. The solutions for all specified phases are given
fined is given next. The corresponding nondimensionalizedn Appendix A. When the conditions corresponding to the
equations of motion consist of a system of four first-ordercurrent phase fail, the next phase begins, and the final dis-
differential equations. placements and velocities for the preceding phase define the
No contact If the distance between the mass and theinitial conditions for the next one. All details of the semiana-
slider top is greater than zerg+g-p>0, then the mass and lytical method allowing calculation of the responses of the
the slider top move separately. The equations of motion argystem using this method are given[itb].
the following: As was mentioned before, the progressigir) can be
r_ calculated separately if the dynamics of the bounded system
P=y, (p,y,q) is known (i.e., the sequence of the phases and the
initial conditions for them Since during theno contactand
the contact without progressiophases the progression does
not change its value,

y'=acodwr+¢)+b for p<qg+g,

1
4 =750 v(9) = s, (5)
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For the contact with progressiorphase,v(7) can be ex-
pressed as

— 1.00
v(7')=v0+po—g—d—(po—g—d)eX[<— 2§0>
b-d a ~t0.75
+Yo(7= 1) + (7= 1)*~ —[codwr+ @) =
@ §
—cofwrg+ @) + o(7— T)SiN(wmy + ©)]. (6) 0.50 g
&
&

IIl. TWO-DIMENSIONAL MAP 4 025

To study the dynamics of the system under investigation, 2
a two-dimensiona(2D) map is derived next and its dynam-
ics is analyzed. In general, the dynamic state of the system is
fully described by four variables: time, relative displace-
mentp and velocityy of the mass, and relative displacement 3 . 75
of the slider topg. This means that if a set of initial condi- et 27 100 120
tions (79; Po, Yo, do) iS given, the subsequent behavior of the se
system can be calculated. However, this number of dynami- £, 2. Trajectory of the system for period-2 motighick line,
cal variables can be reduced to two if the beginning of the;=0.12 and chaotic motion(thin line, b=0.1) for a=0.3¢
progression phase is to be monitored. Let us assume that the).01 »=0.1. The trajectory coincides with the dashed line during
progression phase starts atn and at this momenp  the contact with progression phase, and an arrow indicates the be-
=p«,y=Ys, andg=g.. Then we note that the beginning of the ginning of this phase, which is used in constructing the 2D map.
progression phase is defined as the moment when the force
acting on the slider has reached the critical value, i.e., th‘?nrough the progression phase, whose duratifn,, ) can

following condition is satisfied: be calculated from
28y- *a-=d, 2¢y" () + " () - d=0, (1D
dependent as for Yo=Yn, 0= (= ¢)/ @, anddo=d-2¢y,,
g =d - 2&y.. 7) Next the system has theontact without progression

) ) _ phase. Here there are two possible options as at the end of
Also during both types of contact phaéeith and without  this phase the system can be either at the beginning of the
progressionthe relative displacements of the mass and the:ontact with progressiophase or at the beginning of the

slider top remain linearly related as contactphase. In the first case the duratietty,,, s, of this

D=Q+g contact without progressiophase can be determined from
Iy | e Iy _ A —

and taking into account relationshi@), we have 28y (0)+q'(d)-d=0. (12)

_ In the second case, the duratiof\(y,, 4, is also described
e — - * + . ! n»wn
> d-2¢y.+9 | ®  implicitly by
Thus, only the two independent variablgs and = are 26/ (") + ¢'(0") = 0. (13)

needed to fully describe the dynamic state of the system in

the beginning of the progression phase. Instead of thetime In both cases the functiond (7) andq' (7) are given by Eq.
one can use the angular displacement (A2), substitutingry=(in,— )/ 0+ n(y,, ¥), andpg,Yy,, and
o by the initial values of"'(#),y" (%), andq" (#) for this
contact without progressiophase.

Let us assume that the velociy and angular displacement  For the first case we have already obtaifgd,, ¢.,) as
i for thenth occurrence of the beginning of the progressiona function of(y,,, ,):

phase are described simply ysand ¢,. Consequently the
pair (Y, ) can be used to construct a 2D map Ynr1 = Y+ @(7(Yn, ) + o(Yn, ),

=@+ 0T (9

Yne1 = F1(Yni o), Yoe1 = Y (0" (Y ). (14)
Uror = Folye i) (10) For the second case calculations should be continued until
LT 2 Ty the system reaches the beginning of tbatact with progres-
which is the main motivation for this study. sion phase. After thecontact without progressiophase the

The mapping(10) contains different phases whose num-system goes through theo contactphase and then again
ber and sequence are not known. First of all the system godbkrough thecontact without progressiophase. At the end of
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FIG. 3. 2D maps VYp+1
=f1(Yn, ) and i =To(yn, ¥hn)
calculated for a=0.3,b=0.1,¢
=0.01,0=0.1.

this contact without progressiotwo scenarios are possible jectory is in the vicinity of theg=0 plane. Once the mass hits

as the system can reach either thee contactphase or the

the slider, the trajectory goes out of the0 plane, and dur-

contact with progressiophase. In the latter case the nexting most of thecontact with progressiomphase it is on the
values(yn:1,¥ns1) are obtained, whereas otherwise the cal-line p~1+g,q=1, which is marked by a dashed line. The

culations should be continued.
Even for the simplest case whéy),,1, #,:1) as a function

map(15) allows prediction of only the beginning of tlw®n-
tact with progressiorphase, which is indicated by an arrow,

of (yn, ) is given by Eqs(14), the relationships between and does not monitor entirely thg dynamics betwgen the two
the current and subsequent positions of the system at trdlbsequencontact with progressiophases. Also, it should
beginning of the progression phase are implicit, so we cafve noted that the time between these two subsequent phases

introduce the general implicit 2D map

fy(yny ‘ﬁnvymla ¢n+1) = 01

fw(ynv¢nvyn+11 ¥ne1) = 0. (15

is not knowna priori, and the chaotic motion given by the
thin line in Fig. 2 demonstrates that there could be quite a
few no contactand contact without progressiophases be-
fore the next progression occurs.

Graphical representations of the mékb) are shown in
Fig. 3, computed fory e (0,17.9 and € (0,27). As the

The map(15) can be determined as described above by usingytter domain is perfectly justifiable, an estimation of the

Egs. (A1)HAS), which avoids direct numerical integration mayimum velocity is far from straightforward and will be
and reduces the problem to solving a set of nonlinear algesyplained below.

braic equations.

In order to effectively iterate the 2D ma@5), a good

To make the understanding of the physical meaning of thstimation of the domain af,, andy,, should be determined.
proposed mapl®) easier, let us consider a trajectory in threeThe periodicity of the external force allows us to use the
dimensions. In Fig. 2, two time histories of period-2 and Ofangular displacement;, instead of the timer,, and thusy,
chaotic motion are marked by thick and thin lines, respec-o (0,2m). During the progression phase the velocity of the

tively. When the system is in theo contactphase, the tra-

FIG. 4. Cobweb for a 2D mapping.

massy, is greater than zero, sg,>0, and, as shown in
Appendix B, the maximum velocityl'® is limited. The es-

timation of the maximum value of,, can be given as

1 I
Yy < oKy + \/(b + Kl)z + ng(l‘('év -¢éb+ Kl\““‘gz +w?)?,

(16)
where
a

N g oy 0

Ky= \/(1 -b+Ky)?+ 1§2[§(1 -b) + Kl\;“m]z’

1-

3a
K3:*+wK1+K2
w

2a a 2
+ \/2b<K1+K2—b+2> +(+wK1+K2> . (198
w w

It should be noted here that although the value given in the
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lterations of 2D mapsyn

FIG. 5.
1(ynv

f
0.3

) calculated fora

=f2(ynv
0.01,w=0.1

b=0.1

) and ¢n.q
&

lower half space represents the surfgge

and the

l(yn ' wn)

f

and ¢,. To

these values need to be brought onto the

in the (&, ¥,+1) plane; the poiny, is

n

reflected relative to the ling,,,

Yn in the (y,,Yn+1) plane.

f2(yn1 'zbn)
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Now the constructed 2D map can also be used to study The intersections of the vertical line positionedyt, ;)
matically in Fig. 4. The iteration of the map starts from the (y,, #,) plane again, which is done by reflecting the pajat

the system stability and, for that, a method similar to thewith the surfacesy,.; and .., determiney,
point (y1,#7) on the(y,, ¥, plane. In this figure, the upper about the liney,,;

cobweb method in 1D is developed, which is shown scheiterate the map

inequality (16) will never be reachedsee Appendix B it

gives the upper band for,.
half space is used to represent the surfdge
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K =\- *
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FIG. 6. 2D maps computed fa=0.3,=0.01 w=0.1, and(a) b=0.02,(b) b=0.05,(c) b=0.1, (d) b=0.15, (e) b=0.18, (f) b=0.2, (g)
b=0.24,(h) b=0.29.

So the next pointy,, ¢,) on the(y,, #, plane is obtained, A comparison of bifurcation diagrams calculated for the
and the iteration procedure can be restarted. If for the giveproposed 2D map and for the original set of piecewise linear
set of parameters the system has a stable periodic solutioncadinary differential equations, Eq&)—4), is given in Fig.
fixed point on the(y,, ¢, plane will be found. 8. The diagram presented in Figagis constructed by tak-
Iteration of the 2D map shown in Fig. 3 is demonstrateding 300 points in the beginning of the progression phase,
in Fig. 5. To make this picture clearer, only the last part ofafter eliminating the transient procesgéisst 100 points of
the iteration process converging to the period-2 solution ighe map iteratioyp while the diagram presented in Figb3
shown. The iteration starts from points 1 on both graphsis constructed by taking 300 points, once per period of ex-
Following the thin lines with arrows, according to the ternal excitation, also after the transient process has died
method described above, one can obtain the next points atpwn (which is assumed to last for 100 perigdés can
(Yo, ¢ plane. Here points 4 and 5 are already very close t&learly be seen from this figure for most values of the static
the period-2 orbit whose intersections with the surfaggs  force b, both diagrams indicate the same type of regime.
and ¢,,, are marked by thick vertical lines. However, there are several valué®r example,b=0.27
marked by the dashed linevhere the period-2 orbit shown
in Fig. &a) appears as period-1 orbit in Fig(B. This is
'pecause the duration of one iteration of the 2D map is not
constant, and fob=0.27 during one period of external exci-

IV. PERIODIC AND CHAOTIC ORBITS

Some results from iterations of the 2D map are shown o
h lane in Fig. 6. A n n, the motion of the, . ) )
the (yn, ¥r) plane 9.6 S ca .be seen, t © _oto 9 t etatlon the progression phase occurs twice.
system varies from chaotic to different periodic orbits. In A ioned lier th 42D .
contrast to the classical Poincaré map where the trajectory is \S was mentioned earlier, the propose map contains
sampled once per period of the external excitation. for thiSsufflcuant information to recalculate all characteristics of the

P ce per p o - system dynamics, including the progression. For a given
map, the points are taken at the beginning ofdbetact with . .
. : gomt (¢ ,y+) of the (4,,y,) plane, the durationT of the

progressionphase. As a result, the duration and shape of th 2 ontact with proaressiophase is found by solving the non-
periodic orbit are not knowa priori. For example, period-1 prog p y 9

. I - linear algebraic equationég" (7 +T)+q" (= +T)=d, where
motion, shown in Fig. @), represents periodic response for = L .
which the contact with progressiophase occurs once, and T’flr(w*_@)/w‘ After substituting the funct|on$"“(_r) and
its period is 27/, whereas for period-6 motion, shown in @ (7) from Egs.(AS) andg. from Eq.(7) one obt_ﬁuns
Fig. 6h), the contact with progressiorphase occurs six _ a . o _ L
times, and its period is #/ w. In Fig. 7, two different y«+(b 1)T+w[S|n(wT+ ) = sin(ye)] exp< 26)_0'
period-2 motions are shown using 2D mgp¥gs. 1a) and (19)
7(b)] and phase portraif$-igs. 1c) and {d)]. These motions
not only differ in the shape of the orbits, but they also haveOnce Eq.(19) is solved, by substituting. from Eq.(8) into
different periods, equal to w and 27/ w for Figs. 1a) and  Eg. (6), the progressior. during this phase can be ex-
7(c) and Figs. ™) and 71d), respectively. pressed as
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FIG. 7. (8),(b) 2D maps and
(c),(d) phase portraits computed
for a=0.3,6=0.01,0=0.1, and

(@),(c) b=0.11 and (b),(d) b
=0.27.

-
vs = — 28y, + 2§y*exp<— 2—§> +y. T+ T?

- %[cos(wT + i) — cog i) + T sin(ys)]. (20)

The period-2 motion shown in Figs.(a and 7c) for b
=0.11 has twacontact with progressiophases. The first of
them is described byx; =2.142 21, and.; =5.884 28. Ac-
cording to Eq.(19), it lasts for a timeT;=5.300 76, and,
according to Eq(20), it has the progression., =15.7256.
The secondtontact with progressiomphase is described by
y=1.501 47, andy.,=6.279 03, it lasts for a timerT,
=6.509 02, and has the progressiwn=20.9695. Thus the
total progression per period for this motion is; +v«
=36.6951. For the period-2 motion shown in Figé&)7and
7(d) for b=0.27, we havey, =5.9506y+;=0.272 31, T,
v+ =0.0779602 and ¢,=5.07541y.,
=1.775 33,T,=3.046 63,0+, =2.607 51, and the total pro-
gression per period is 3.660 48. Thus, taking into account the
difference in the periods for these regimes, we can deduce
that during the same time the progressionkier0.11 will be
approximately five times larger than for=0.27.

Equationg19) and(20) allow us to calculate the duration
of the contact with progressiophase and the progression as
functions of initial angular displacemeuit and velocityy:
and, consequently, to construgt and v« as functions of
(y«, ¢n). The surfacesT(¢x,y-) and v(i,y+) presented in
Fig. 9 clearly show the level of progression for the given set
of system parameters and might be useful from the applica-
tion point of view, in particular to develop effective control

7.00
* 50
5251
2.54
3.50]
N
> 0.0
175
25
0.00 . , , 5o | . |
000 175 350 525 700 O s g pr ;
@) v © »
7.00 )
525
1<
> 3.50 .
0
1751 .
0.00 , , . 4 | | |
000 175 350 525  7.00 P 4 ) ; !
(b} v (d) p
8
a
oy
Q
2
[*]
>
0.14 021 0.28 =0.613 85,
(a)
a
2
Q
2
o 21
>
AL WL S, e
(E VN &
0.07 0.14 021 0.28 i
(b) Static force, b strategies.

FIG. 8. Bifurcation diagrams computed fa=0.3,£=0.01 0
=0.1 for (a) the developed 2D map an@) the original set of
piecewise linear ordinary differential equations E@®—(4).

V. CONCLUSIONS

In this paper, an impact oscillator with a drift was consid-
ered. To study the bounded dynamics of the system, a two-
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FIG. 9. (a) Duration ofcontact
with progressiorphase,T, and(b)
achieved progression, as func-
tion of ¢, andy,, calculated for
a=0.3,£=0.01,0v=0.1, and b
=0.15.

dimensional analytical map was developed and analyzed. In | T— T
q (7) = dpex (A1)

general, the dynamic state of the system is fully described by 2¢

four variables: timer, relative displacemert and velocityy

of the mass, and relative displacement of the slider tpp, For thecontact without progressiophase,

However, this number was reduced by two by choosing the i

beginning of the progression phase as the point to be moniP p'(7) =b+g+ex- &7 )]NCT + C5 sinlv1 - €X(7 = 7))

tored. The lower and the upper bounds of the map domain a )

were approximated. A graphical method of iteration of the + B+ Py ssinfwr+ ¢+ a),

two-dimensional map similar to the cobweb method, used in V=)™ + 48

the one-dimensional case, was proposed. W 73 .o 5
The results of numerical iterations of this two- Y (7)=exXd— &= m)]NCI+Cysinvl = £&(7— 1) + 3]

dimensional map show the complexity of the system with aw

responses ranging from periodic to chaotic. In contrast to the + TN

classical Poincaré map, where the trajectory is sampled once V2 -0+ 48

per period of the external excitation, for our two-dimensional | o

map the points are taken at the beginning of the progressiofi' (1) =b+ex~ &7~ ) ]VC + C5siV1 - &(7~ 7o) + B]

phase. As a result, the duration and the shape of the periodic a

orbits are not knowra priori. For this reason, it was under- + —>——5SiNeT+ e+ a), (A2)

stood that period-2 motion on the bifurcation diagram calcu- VA -0+ 4

lated for this map appears as period-1 motion on the bifuryhere

cation diagrams calculated for the original system.
Calculation of the duration of theontact with progres- C.=po-b-g- a

sion phase and the progression as functions of the variables ~*~ "° V(1 - 0d)? + 48202

of the developed 2D map, i.e., the angular displacement and (A3)

the velocity of the mass, appears to be useful from the ap-

plication point of view. These functions clearly show the

level of progression for the given set of system parameters C,=—

and might be used for the development of control strategies V1-&

cojwt+ o+ a),

sinwmy+ ¢+ a),

{yo+§(po—b—g)

for vibroimpact devices. o
aéfro sinlwmy+ e+ a+y)
- = WT o s
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APPENDIX A
The solutions for each phase are given here. B= arctar(c—l),
For theno contactphase, 2
| b , 4a _ w
P (7) = P+ YolT— 7o) + E(T‘ 0"~ E[COS{WT"' ®) y=arcta E ,
- COiO)TO + (P) + w(T_ TO)Sin(wTO + QD)], _ §C1 + \1 _ §2C2
d=arcta s > (A4)
—V1-£C,- ¢C,

a
(1) =yy+ b(7= 75) + —[si + @) —si +
Y1) =Yo+blr=) w[sm(wT ¢) = sinwm+ @), For thecontact with progressiophase,
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p“'(r)=g+l+(po—g—d)eXp<— 7;57‘)), A

Y1) =yo+ (b= d)(7— 1) + g[sin(w ¢) - sifwm+ ¢)],

q" (1) = (g - d)exp(— T;;’) +1. (A5)

APPENDIX B

The method of obtaining the estimatigh6) is outlined
below. As the solutiongAb) for the contact with progression
phase contain exponential functions rapidly converging to
zero, for any initial conditions the relative displacement of
mass and slider are1+g and=1, respectively, the velocity
of the mass is=0, and the only arbitrariness left is in the
phase shift at the end of this phase. Thus the initial condi-
tions for the next phasesontact without progressignare ) )
known apart from the phase shift, and the values of botHongest possible duratiofr of the no contactphase should
displacements and velocity during this new phase can bge found.

FIG. 10. Schematic to estimatA 1) nay

estimated from Eq(A2): Equation(B3) can be rewritten as
K, - b
b+g-K;-Ky<p<b+g+K;+Ky, 5(AT)2+ (yo— Esin(¢o))AT+ Po—g+ %cos(zﬂo)
w w
- - a
oKy =Ky <y < wK;+ Ky, = ;COS{L{)AT"‘ o). (B4)

b-Ki—Ke<q<b+K;+Kz, As can be seen from E@B4), the solutionA is a point of

intersection of the parabola given in the left-hand side and
0< y<2m, (B1) the_ cogine functio_n given in the_ rig_ht-hand side of EB|4)

which is schematically shown in Fig. 10. As the coefficient
attached to(A7)? is constant, the point of intersection of
these two curves depends on the position of the parabola
minimum and the phase of the cosine function. The values of
and ¢, define the minimum:

whereK; andK, are given by Eqs(17) and (18). The in-
equalities(B1) determine all possible initial conditions for
the next phaseno contact It should be noted that the pre-
cisely determined initial conditions may belong to narrowerPo» Yo
regions, but they are certainly included &1). Let us find

now the maximum velocity at the end of thre contact t :_y_O_,_isi f =p.— +ico
phase. Using the solutioié1) one can obtain P b wb o), Tp=Po~g w? o
- a sin(¢o)/ w]?
28 o N(go)/w] . (B5)
y<—+bAr, (B2) 2b
w

A7 will reach its maximum if the right branch of the pa-
rabola intersects the cosine functi@ee Fig. 1Q This maxi-
mum will occur for the cosine function having a local maxi-

whereAr is the duration of thao contactphase A7 is the
solution of the equatiop(A7)=g, wherep(7) is calculated

from Eq. (AL): mum, i.e.,
A b An?-2 A b ) a
Po + Yo(AT) +5( () ;{cos{w( 7) + o] — COLeho) 5[(AT) —t P+ f,= et
+ w(AT)Sin(Y)} = g. (B3)
Thus
Po.Yo, and i, are the initial conditions for theo contact
phase which belong to the regio®1). Now, according to 2/ a _
Eg. (B2), in order to determine the maximum velocity, the (A7) =%+ B<_2 - fpm'”>.
w
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It is possible to estimate]**and f " using the regiongB1) The next phase is again tlwentact without progression
and expression5): phase, and the maximum velocity for this phase gives the
upper estimation for the initial velocity of the negbntact
fmax < oKy +Kp + 2 with progressionphase. Using the solutiofA2), one can
P b wb’ easily obtain
a (oK +Kp+alw)? y < VC2+C2+aK,, (B7)

f;nlnzb—Kl_Kz__z 2b

Thus @ where C; and C, depend on the initial conditions for this

phase. At the beginning of theontact without progression

phase, the relative displacement of the m@a$s equal tog,

and the velocity does not exceed the vakKie Substituting

these values as the initial conditions into E@s3) and(A4),

2a a 2 . . f/ﬁ o

+ \/Zb(K1+ Ky-b+ —2) + (— + oKy + K2> } (B6)  calculating the maximum of/C7+C5, and then substituting
® ® the result into Eq(B7), we have finally arrived at the esti-

mation given in Eq(16):

1] a
(A7) max< B|:; + oK +K;

and substituting Eq(B6) into (B2) we obtain an estimation
of maximum velocity at the end of theo contactphase 1
y<Ks, whereKj is given by Eq.(19). y < oKy + \/(b +Kp)?+ TSZ(K3 -+ K V& + 0?)?.
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