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An impact oscillator with drift is considered. The model accounts for viscoelastic impacts and is capable of
mimicking the dynamics of progressive motion, which is important in many applications. To simplify the
analysis of this system, a transformation decoupling the original coordinates is introduced. As a result, the
bounded oscillations are separated from the drift motion. To study the bounded dynamics, a two-dimensional
analytical map is developed and analyzed. In general, the dynamic state of the system is fully described by four
variables: timet, relative displacementp and velocityy of the mass, and relative displacementq of the slider
top. However, this number can be reduced to two if the beginning of the progression phase is being monitored.
The lower and upper bounds of the map domain are approximated. A graphical method of iteration of the
two-dimensional map, similar to the cobweb method used in the one-dimensional case, is proposed. The results
of numerical iterations of this two-dimensional map are presented, and a comparison is given between bifur-
cation diagrams calculated for this map and for the original system of differential equations.
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I. INTRODUCTION

The dynamics of impacting systems that drift during op-
eration is of considerable importance in practical applica-
tions. A wide range of models have been applied to analyze
engineering systems operating within bounded dynamic re-
sponses. For example, in heat exchanger tubes[1], thin-wall
milling [2], ultrasonic drilling of hard materials[3], and vi-
broimpact ground moling systems[4], impacting models
have proved to be useful. The fundamental dynamic behavior
of impact oscillators has been much studied in the past(e.g.,
[5–11]) and shows great complexity and sensitivity to the
system parameters and the initial conditions. In most cases it
is assumed that the impacting system or its elements oscillate
about their equilibrium positions. Only recently has a com-
bination of bounded oscillations and drifting motion started
to be considered[12–16]. The coordinate transformation pro-
posed in[16] significantly simplifies the analysis of an im-
pact oscillator with drift as it allows one to apply standard
nonlinear dynamic techniques, and thus study the bounded
oscillations separately from the progressive motion and re-
construct the drift of the system afterward. In the current
study, an implicitly defined map of reduced dimension is
developed, similar to those introduced in[17–22].

The system considered in this work belongs to a class of
piecewise smooth systems, whose dynamics are known to
exhibit complex bifurcation scenarios and chaos. These sys-
tems can undergo all types of bifurcations that smooth ones
do, but apart from them there is whole class of bifurcations
that are unique to piecewise smooth systems such as grazing

[10,23,24], chattering[25], and sliding[26]. A good deal of
work has been done to study these special bifurcations using
normal form maps which were derived based on the system’s
original differential equations(see for example,[26–28]).
The general bifurcation scenarios in explicitly defined two-
dimensional piecewise smooth maps were also considered in
[11,29]. However, it is difficult to apply the developed bifur-
cation theory to the map introduced in the current study as it
is defined implicitly. It should be noted also that, although
the impact oscillator[16] can certainly undergo grazing bi-
furcations, they are beyond the scope of the present study.

The paper is organized as follows. In the next section, the
considered impact oscillator is described and equations for
each phase of motion are given. Then the two-dimensional
map is defined on a finite domain, whose boundaries are
analytically determined. The numerical results are presented
and discussed in Sec. IV, and finally the conclusions are
drawn.

II. IMPACT OSCILLATOR WITH DRIFT

We consider the simple two-degrees-of-freedom oscillator
shown in Fig. 1. A massm is driven by an external forcef
containing staticb and dynamica cossvt+wd components.
The weightless slider has a linear viscoelastic pair of stiff-
nessk and dampingc. The system is nondimensionalized,
where t, 2j, f, b, a, and v are the nondimensional time,
damping coefficient, force, static component, and amplitude
and frequency of the dynamic component, respectively. As
has been reported in[14], the slider drifts in stick-slip phases
where the relative oscillations between the mass and the
slider are bounded and range from periodic to chaotic. Simi-
larly to the stick-slip phenomena reported in[30,31], the
progressive motion of the mass occurs when the force acting
on the slider exceeds the threshold of the dry friction forced.
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The variablesx,z,v represent the absolute displacements of
the mass, slider top, and slider bottom, respectively. It is
assumed that the model operates in the horizontal plane, or
the gravitational force is appropriately compensated. At the
initial instantt=0, there is a gap between the mass and the
slider top, indicated byg. The differencesz+gd−x allows
monitoring of the gap size. To simplify the subsequent analy-
sis, the dimensionless friction threshold forced is set to 1,
and we also setw=p /2 and initial gapg=0.02.

The system under consideration can operate in one of the
following modes:no contact, contact without progression,
andcontact with progression. A detailed description of these
modes, the dimensional form of the equations of motion, and
details of the nondimensionalization procedure can be found
in [14]. As reported in[16], by introducing the system of
coordinatessp,q,vd, defined in terms ofsx,z,vd, as

p = x − v,

q = z− v, s1d

it is possible to separate the oscillatory motion of the system
from the drift. In fact, in this coordinate system,p andq are
the displacements of the mass and the slider top, relative to
the current position of the slider bottomv. In this study, we
consider bounded oscillations and attempt to reconstruct the
progressive motion.

For the purpose of clarity, a brief review summarizing
how all particular phases of the dynamic responses are de-
fined is given next. The corresponding nondimensionalized
equations of motion consist of a system of four first-order
differential equations.

No contact. If the distance between the mass and the
slider top is greater than zero,q+g−p.0, then the mass and
the slider top move separately. The equations of motion are
the following:

p8 = y,

y8 = a cossvt + wd + b for p , q + g,

q8 = −
1

2j
q,

v8 = 0. s2d

Contact without progression. This mode occurs when the
distance between the mass and the slider top is equal to zero,
i.e., q+g−p=0, and the force acting on the mass from the
slider is greater than zero but smaller than the threshold of
the dry friction force. The equations of motion are in this
case

p8 = y,

y8 = − 2jy − q + a cossvt + wd + b for p = q + g

and 0, 2jy + q , d,

q8 = y,

v8 = 0. s3d

Contact with progression. When the distance between the
mass and the slider top is equal to zero,q+g−p=0, and the
force acting on the mass is greater than the threshold of the
dry friction force, then the mass and the top and the bottom
of the slider move together, and progression takes place. We
have the following equations of motion:

p8 = −
1

2j
sq − dd,

y8 = a cossvt + wd + b − d for p = q + g and 2jy + q ù d,

q8 = −
1

2j
sq − dd,

v8 = y +
1

2j
sq − dd. s4d

The equations of motion are linear for each phase; there-
fore the global solution can be constructed by joining the
local solutions at the points of discontinuities. The set of
initial valuesst0;p0,y0,q0d defines in which phase the sys-
tem will operate. Ifp0,q0+g, it is theno contactphase. For
p0=q0+g, it will be the contact without progressionphase if
0,2jy0+q0,d or the contact with progressionphase if
2jy0+q0ùd. The solutions for all specified phases are given
in Appendix A. When the conditions corresponding to the
current phase fail, the next phase begins, and the final dis-
placements and velocities for the preceding phase define the
initial conditions for the next one. All details of the semiana-
lytical method allowing calculation of the responses of the
system using this method are given in[15].

As was mentioned before, the progressionvstd can be
calculated separately if the dynamics of the bounded system
sp,y,qd is known (i.e., the sequence of the phases and the
initial conditions for them). Since during theno contactand
the contact without progressionphases the progression does
not change its value,

vstd = v0. s5d

FIG. 1. Physical model of impact system with drift.
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For the contact with progressionphase,vstd can be ex-
pressed as

vstd = v0 + p0 − g − d − sp0 − g − ddexpS−
t − t0

2j
D

+ y0st − t0d +
b − d

2
st − t0d2−

a

v2fcossvt + wd

− cossvt0 + wd + vst − t0dsinsvt0 + wdg. s6d

III. TWO-DIMENSIONAL MAP

To study the dynamics of the system under investigation,
a two-dimensional(2D) map is derived next and its dynam-
ics is analyzed. In general, the dynamic state of the system is
fully described by four variables: timet, relative displace-
mentp and velocityy of the mass, and relative displacement
of the slider topq. This means that if a set of initial condi-
tions st0;p0,y0,q0d is given, the subsequent behavior of the
system can be calculated. However, this number of dynami-
cal variables can be reduced to two if the beginning of the
progression phase is to be monitored. Let us assume that the
progression phase starts att=t* and at this momentp
=p* ,y=y* , andq=q* . Then we note that the beginning of the
progression phase is defined as the moment when the force
acting on the slider has reached the critical value, i.e., the
following condition is satisfied:

2jy* + q* = d,

which means that, at this moment,y* and q* are linearly
dependent as

q* = d − 2jy* . s7d

Also during both types of contact phase(with and without
progression) the relative displacements of the mass and the
slider top remain linearly related as

p* = q* + g,

and taking into account relationship(7), we have

p* = d − 2jy* + g. s8d

Thus, only the two independent variablesy* and t* are
needed to fully describe the dynamic state of the system in
the beginning of the progression phase. Instead of the timet*
one can use the angular displacement

c* = w + vt* . s9d

Let us assume that the velocityy* and angular displacement
c* for thenth occurrence of the beginning of the progression
phase are described simply asyn and cn. Consequently the
pair syn,cnd can be used to construct a 2D map

yn+1 = f1syn,cnd,

cn+1 = f2syn,cnd, s10d

which is the main motivation for this study.
The mapping(10) contains different phases whose num-

ber and sequence are not known. First of all the system goes

through the progression phase, whose durationhsyn,cnd can
be calculated from

2jyIII shd + qIII shd − d = 0, s11d

where the functionsyIII std andqIII std are given by Eq.(A5)
for y0=yn,t0=scn−wd /v, andq0=d−2jyn.

Next the system has thecontact without progression
phase. Here there are two possible options as at the end of
this phase the system can be either at the beginning of the
contact with progressionphase or at the beginning of theno
contactphase. In the first case the durationsIsyn,cnd of this
contact without progressionphase can be determined from

2jyIIssId + qIIssId − d = 0. s12d

In the second case, the durationsIIsyn,cnd is also described
implicitly by

2jyIIssIId + qIIssIId = 0. s13d

In both cases the functionsyIIstd andqIIstd are given by Eq.
(A2), substitutingt0=scn−wd /v+hsyn,cnd, and p0,y0, and
q0 by the initial values ofpIII shd ,yIII shd, andqIII shd for this
contact without progressionphase.

For the first case we have already obtainedsyn+1,cn+1d as
a function ofsyn,cnd:

cn+1 = cn + v„hsyn,cnd + ssyn,cnd…,

yn+1 = yII
„sIIsyn,cnd…. s14d

For the second case calculations should be continued until
the system reaches the beginning of thecontact with progres-
sion phase. After thecontact without progressionphase the
system goes through theno contactphase and then again
through thecontact without progressionphase. At the end of

FIG. 2. Trajectory of the system for period-2 motion(thick line,
b=0.12) and chaotic motion(thin line, b=0.1) for a=0.3,j
=0.01,v=0.1. The trajectory coincides with the dashed line during
the contact with progression phase, and an arrow indicates the be-
ginning of this phase, which is used in constructing the 2D map.
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this contact without progressiontwo scenarios are possible
as the system can reach either theno contactphase or the
contact with progressionphase. In the latter case the next
valuessyn+1,cn+1d are obtained, whereas otherwise the cal-
culations should be continued.

Even for the simplest case whensyn+1,cn+1d as a function
of syn,cnd is given by Eqs.(14), the relationships between
the current and subsequent positions of the system at the
beginning of the progression phase are implicit, so we can
introduce the general implicit 2D map

fysyn,cn,yn+1,cn+1d = 0,

fcsyn,cn,yn+1,cn+1d = 0. s15d

The map(15) can be determined as described above by using
Eqs. (A1)–(A5), which avoids direct numerical integration
and reduces the problem to solving a set of nonlinear alge-
braic equations.

To make the understanding of the physical meaning of the
proposed map(15) easier, let us consider a trajectory in three
dimensions. In Fig. 2, two time histories of period-2 and of
chaotic motion are marked by thick and thin lines, respec-
tively. When the system is in theno contactphase, the tra-

jectory is in the vicinity of theq=0 plane. Once the mass hits
the slider, the trajectory goes out of theq=0 plane, and dur-
ing most of thecontact with progressionphase it is on the
line p<1+g,q<1, which is marked by a dashed line. The
map(15) allows prediction of only the beginning of thecon-
tact with progressionphase, which is indicated by an arrow,
and does not monitor entirely the dynamics between the two
subsequentcontact with progressionphases. Also, it should
be noted that the time between these two subsequent phases
is not knowna priori, and the chaotic motion given by the
thin line in Fig. 2 demonstrates that there could be quite a
few no contactand contact without progressionphases be-
fore the next progression occurs.

Graphical representations of the map(15) are shown in
Fig. 3, computed foryP s0,17.5d and cP s0,2pd. As the
latter domain is perfectly justifiable, an estimation of the
maximum velocity is far from straightforward and will be
explained below.

In order to effectively iterate the 2D map(15), a good
estimation of the domain ofcn andyn should be determined.
The periodicity of the external force allows us to use the
angular displacementcn instead of the timetn and thuscn
P s0,2pd. During the progression phase the velocity of the
massyn is greater than zero, soyn.0, and, as shown in
Appendix B, the maximum velocityyn

max is limited. The es-
timation of the maximum value ofyn can be given as

yn
max, vK1 +Îsb + K1d2 +

1

1 − j2sK3 − jb + K1
Îj2 + v2d2,

s16d

where

K1 =
a

Îs1 − v2d2 + 4j2v2
, s17d

K2 =Îs1 − b + K1d2 +
1

1 − j2fjs1 − bd + K1
Îj2 + v2g2,

K3 =
3a

v
+ vK1 + K2

+Î2bSK1 + K2 − b +
2a

v2D + S a

v
+ vK1 + K2D2

. s18d

It should be noted here that although the value given in the

FIG. 3. 2D maps yn+1

= f1syn,cnd and cn+1= f2syn,cnd
calculated for a=0.3,b=0.1,j
=0.01,v=0.1.

FIG. 4. Cobweb for a 2D mapping.

PAVLOVSKAIA, WIERCIGROCH, AND GREBOGI PHYSICAL REVIEW E70, 036201(2004)

036201-4



inequality (16) will never be reached(see Appendix B), it
gives the upper band foryn.

Now the constructed 2D map can also be used to study
the system stability and, for that, a method similar to the
cobweb method in 1D is developed, which is shown sche-
matically in Fig. 4. The iteration of the map starts from the
point sy1,c1d on thesyn,cnd plane. In this figure, the upper
half space is used to represent the surfacecn+1= f2syn,cnd

and the lower half space represents the surfaceyn+1
= f1syn,cnd.

The intersections of the vertical line positioned atsy1,c1d
with the surfacesyn+1 and cn+1 determiney2 and c2. To
iterate the map, these values need to be brought onto the
syn,cnd plane again, which is done by reflecting the pointc2

about the linecn+1=cn in the scn,cn+1d plane; the pointy2 is
reflected relative to the lineyn+1=yn in the syn,yn+1d plane.

FIG. 5. Iterations of 2D maps yn+1

= f1syn,cnd and cn+1= f2syn,cnd calculated fora
=0.3,b=0.1,j=0.01,v=0.1.

TWO-DIMENSIONAL MAP FOR IMPACT OSCILLATOR… PHYSICAL REVIEW E 70, 036201(2004)

036201-5



So the next pointsy2,c2d on thesyn,cnd plane is obtained,
and the iteration procedure can be restarted. If for the given
set of parameters the system has a stable periodic solution, a
fixed point on thesyn,cnd plane will be found.

Iteration of the 2D map shown in Fig. 3 is demonstrated
in Fig. 5. To make this picture clearer, only the last part of
the iteration process converging to the period-2 solution is
shown. The iteration starts from points 1 on both graphs.
Following the thin lines with arrows, according to the
method described above, one can obtain the next points on
syn,cnd plane. Here points 4 and 5 are already very close to
the period-2 orbit whose intersections with the surfacesyn+1
andcn+1 are marked by thick vertical lines.

IV. PERIODIC AND CHAOTIC ORBITS

Some results from iterations of the 2D map are shown on
the syn,cnd plane in Fig. 6. As can be seen, the motion of the
system varies from chaotic to different periodic orbits. In
contrast to the classical Poincaré map where the trajectory is
sampled once per period of the external excitation, for this
map, the points are taken at the beginning of thecontact with
progressionphase. As a result, the duration and shape of the
periodic orbit are not knowna priori. For example, period-1
motion, shown in Fig. 6(d), represents periodic response for
which thecontact with progressionphase occurs once, and
its period is 2p /v, whereas for period-6 motion, shown in
Fig. 6(h), the contact with progressionphase occurs six
times, and its period is 4p /v. In Fig. 7, two different
period-2 motions are shown using 2D maps[Figs. 7(a) and
7(b)] and phase portraits[Figs. 7(c) and 7(d)]. These motions
not only differ in the shape of the orbits, but they also have
different periods, equal to 4p /v and 2p /v for Figs. 7(a) and
7(c) and Figs. 7(b) and 7(d), respectively.

A comparison of bifurcation diagrams calculated for the
proposed 2D map and for the original set of piecewise linear
ordinary differential equations, Eqs.(2)–(4), is given in Fig.
8. The diagram presented in Fig. 8(a) is constructed by tak-
ing 300 points in the beginning of the progression phase,
after eliminating the transient processes(first 100 points of
the map iteration), while the diagram presented in Fig. 8(b)
is constructed by taking 300 points, once per period of ex-
ternal excitation, also after the transient process has died
down (which is assumed to last for 100 periods). As can
clearly be seen from this figure for most values of the static
force b, both diagrams indicate the same type of regime.
However, there are several values(for example, b=0.27
marked by the dashed line) where the period-2 orbit shown
in Fig. 8(a) appears as period-1 orbit in Fig. 8(b). This is
because the duration of one iteration of the 2D map is not
constant, and forb=0.27 during one period of external exci-
tation the progression phase occurs twice.

As was mentioned earlier, the proposed 2D map contains
sufficient information to recalculate all characteristics of the
system dynamics, including the progression. For a given
point sc* ,y*d of the scn,ynd plane, the durationT of the
contact with progressionphase is found by solving the non-
linear algebraic equation 2jyIII st* +Td+qIII st* +Td=d, where
t* =sc* −wd /v. After substituting the functionsyIII std and
qIII std from Eqs.(A5) andq* from Eq. (7) one obtains

y* + sb − 1dT +
a

v
fsinsvT + c*d − sinsc*dg − expS−

T

2j
D = 0.

s19d

Once Eq.(19) is solved, by substitutingp* from Eq. (8) into
Eq. (6), the progressionv* during this phase can be ex-
pressed as

FIG. 6. 2D maps computed fora=0.3,j=0.01,v=0.1, and(a) b=0.02,(b) b=0.05,(c) b=0.1, (d) b=0.15,(e) b=0.18,(f) b=0.2, (g)
b=0.24,(h) b=0.29.
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v* = − 2jy* + 2jy*expS−
T

2j
D + y*T +

b − 1

2
T2

−
a

v2fcossvT + c*d − cossc*d + vT sinsc*dg. s20d

The period-2 motion shown in Figs. 7(a) and 7(c) for b
=0.11 has twocontact with progressionphases. The first of
them is described byc*1 =2.142 21, andy*1 =5.884 28. Ac-
cording to Eq.(19), it lasts for a timeT1=5.300 76, and,
according to Eq.(20), it has the progressionv*1 =15.7256.
The secondcontact with progressionphase is described by
c*2 =1.501 47, andy*2 =6.279 03, it lasts for a timeT2
=6.509 02, and has the progressionv*2 =20.9695. Thus the
total progression per period for this motion isv*1 +v*2
=36.6951. For the period-2 motion shown in Figs. 7(b) and
7(d) for b=0.27, we havec*1 =5.9506,y*1 =0.272 31, T1
=0.613 85, v*1 =0.077 960 2 and c*2 =5.075 41,y*2
=1.775 33,T2=3.046 63,v*2 =2.607 51, and the total pro-
gression per period is 3.660 48. Thus, taking into account the
difference in the periods for these regimes, we can deduce
that during the same time the progression forb=0.11 will be
approximately five times larger than forb=0.27.

Equations(19) and(20) allow us to calculate the duration
of thecontact with progressionphase and the progression as
functions of initial angular displacementc* and velocityy*
and, consequently, to constructT and v* as functions of
sy* ,c*d. The surfacesTsc* ,y*d and vsc* ,y*d presented in
Fig. 9 clearly show the level of progression for the given set
of system parameters and might be useful from the applica-
tion point of view, in particular to develop effective control
strategies.

V. CONCLUSIONS

In this paper, an impact oscillator with a drift was consid-
ered. To study the bounded dynamics of the system, a two-

FIG. 7. (a),(b) 2D maps and
(c),(d) phase portraits computed
for a=0.3,j=0.01,v=0.1, and
(a),(c) b=0.11 and (b),(d) b
=0.27.

FIG. 8. Bifurcation diagrams computed fora=0.3,j=0.01,v
=0.1 for (a) the developed 2D map and(b) the original set of
piecewise linear ordinary differential equations Eqs.(2)–(4).
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dimensional analytical map was developed and analyzed. In
general, the dynamic state of the system is fully described by
four variables: timet, relative displacementp and velocityy
of the mass, and relative displacement of the slider top,q.
However, this number was reduced by two by choosing the
beginning of the progression phase as the point to be moni-
tored. The lower and the upper bounds of the map domain
were approximated. A graphical method of iteration of the
two-dimensional map similar to the cobweb method, used in
the one-dimensional case, was proposed.

The results of numerical iterations of this two-
dimensional map show the complexity of the system with
responses ranging from periodic to chaotic. In contrast to the
classical Poincaré map, where the trajectory is sampled once
per period of the external excitation, for our two-dimensional
map the points are taken at the beginning of the progression
phase. As a result, the duration and the shape of the periodic
orbits are not knowna priori. For this reason, it was under-
stood that period-2 motion on the bifurcation diagram calcu-
lated for this map appears as period-1 motion on the bifur-
cation diagrams calculated for the original system.

Calculation of the duration of thecontact with progres-
sion phase and the progression as functions of the variables
of the developed 2D map, i.e., the angular displacement and
the velocity of the mass, appears to be useful from the ap-
plication point of view. These functions clearly show the
level of progression for the given set of system parameters
and might be used for the development of control strategies
for vibroimpact devices.

ACKNOWLEDGMENT

This research was supported by EPSRC under Grant No.
GR/R85556/01.

APPENDIX A

The solutions for each phase are given here.
For theno contactphase,

pIstd = p0 + y0st − t0d +
b

2
st − t0d2 −

a

v2fcossvt + wd

− cossvt0 + wd + vst − t0dsinsvt0 + wdg,

yIstd = y0 + bst − t0d +
a

v
fsinsvt + wd − sinsvt0 + wdg,

qIstd = q0expS−
t − t0

2j
D . sA1d

For thecontact without progressionphase,

pIIstd = b + g + expf− jst − t0dgÎC1
2 + C2

2 sinfÎ1 − j2st − t0d

+ bg +
a

Îs1 − v2d2 + 4j2v2
sinsvt + w + ad,

yIIstd = expf− jst − t0dgÎC1
2 + C2

2 sinfÎ1 − j2st − t0d + dg

+
av

Îs1 − v2d2 + 4j2v2
cossvt + w + ad,

qIIstd = b + expf− jst − t0dgÎC1
2 + C2

2 sinfÎ1 − j2st − t0d + bg

+
a

Îs1 − v2d2 + 4j2v2
sinsvt + w + ad, sA2d

where

C1 = p0 − b − g −
a

Îs1 − v2d2 + 4j2v2
sinsvt0 + w + ad,

sA3d

C2 =
1

Î1 − j2Hy0 + jsp0 − b − gd

−
aÎj2 + v2

Îs1 − v2d2 + 4j2v2
sinsvt0 + w + a + gdJ ,

a = arctanS1 − v2

2jv
D ,

b = arctanSC1

C2
D ,

g = arctanSv

j
D ,

d = arctanS− jC1 + Î1 − j2C2

− Î1 − j2C1 − jC2
D . sA4d

For thecontact with progressionphase,

FIG. 9. (a) Duration ofcontact
with progressionphase,T, and(b)
achieved progression,v, as func-
tion of cn and yn, calculated for
a=0.3,j=0.01,v=0.1, and b
=0.15.
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pIII std = g + 1 + sp0 − g − ddexpS−
t − t0

2j
D ,

yIII std = y0 + sb − ddst − t0d +
a

v
fsinsvt + wd − sinsvt0 + wdg,

qIII std = sq0 − ddexpS−
t − t0

2j
D + 1. sA5d

APPENDIX B

The method of obtaining the estimation(16) is outlined
below. As the solutions(A5) for thecontact with progression
phase contain exponential functions rapidly converging to
zero, for any initial conditions the relative displacement of
mass and slider are<1+g and<1, respectively, the velocity
of the mass is<0, and the only arbitrariness left is in the
phase shift at the end of this phase. Thus the initial condi-
tions for the next phase,contact without progression, are
known apart from the phase shift, and the values of both
displacements and velocity during this new phase can be
estimated from Eq.(A2):

b + g − K1 − K2 , p , b + g + K1 + K2,

− vK1 − K2 , y , vK1 + K2,

b − K1 − K2 , q , b + K1 + K2,

0 , c , 2p, sB1d

whereK1 and K2 are given by Eqs.(17) and (18). The in-
equalities(B1) determine all possible initial conditions for
the next phase,no contact. It should be noted that the pre-
cisely determined initial conditions may belong to narrower
regions, but they are certainly included by(B1). Let us find
now the maximum velocity at the end of theno contact
phase. Using the solutions(A1) one can obtain

y ,
2a

v
+ bDt, sB2d

whereDt is the duration of theno contactphase.Dt is the
solution of the equationpsDtd=g, wherepstd is calculated
from Eq. (A1):

p0 + y0sDtd +
b

2
sDtd2 −

a

v2hcosfvsDtd + c0g − cossc0d

+ vsDtdsinsc0dj = g. sB3d

p0,y0, and c0 are the initial conditions for theno contact
phase which belong to the regions(B1). Now, according to
Eq. (B2), in order to determine the maximum velocity, the

longest possible durationDt of the no contactphase should
be found.

Equation(B3) can be rewritten as

b

2
sDtd2 + Sy0 −

a

v
sinsc0dDDt + p0 − g +

a

v2cossc0d

=
a

v2cossvDt + c0d. sB4d

As can be seen from Eq.(B4), the solutionDt is a point of
intersection of the parabola given in the left-hand side and
the cosine function given in the right-hand side of Eq.(B4),
which is schematically shown in Fig. 10. As the coefficient
attached tosDtd2 is constant, the point of intersection of
these two curves depends on the position of the parabola
minimum and the phase of the cosine function. The values of
p0, y0, andc0 define the minimum:

tp = −
y0

b
+

a

vb
sinsc0d, fp = p0 − g +

a

v2cossc0d

−
fy0 − a sinsc0d/vg2

2b
. sB5d

Dt will reach its maximum if the right branch of the pa-
rabola intersects the cosine function(see Fig. 10). This maxi-
mum will occur for the cosine function having a local maxi-
mum, i.e.,

b

2
fsDtd − tpg2 + fp =

a

v2 .

Thus

sDtdmax= tp
max+Î2

b
S a

v2 − fp
minD .

FIG. 10. Schematic to estimatesDtdmax.
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It is possible to estimatetp
max and fp

min using the regions(B1)
and expressions(B5):

tp
maxø

vK1 + K2

b
+

a

vb
,

fp
min ù b − K1 − K2 −

a

v2 −
svK1 + K2 + a/vd2

2b
.

Thus

sDtdmax,
1

b
F a

v
+ vK1 + K2

+Î2bSK1 + K2 − b +
2a

v2D + S a

v
+ vK1 + K2D2G , sB6d

and substituting Eq.(B6) into (B2) we obtain an estimation
of maximum velocity at the end of theno contactphase
y,K3, whereK3 is given by Eq.(19).

The next phase is again thecontact without progression
phase, and the maximum velocity for this phase gives the
upper estimation for the initial velocity of the nextcontact
with progressionphase. Using the solution(A2), one can
easily obtain

y , ÎC̃1
2 + C̃2

2 + aK1, sB7d

where C̃1 and C̃2 depend on the initial conditions for this
phase. At the beginning of thecontact without progression
phase, the relative displacement of the massp is equal tog,
and the velocity does not exceed the valueK3. Substituting
these values as the initial conditions into Eqs.(A3) and(A4),

calculating the maximum ofÎC̃1
2+C̃2

2, and then substituting
the result into Eq.(B7), we have finally arrived at the esti-
mation given in Eq.(16):

y , vK1 +Îsb + K1d2 +
1

1 − j2sK3 − jb + K1
Îj2 + v2d2.
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